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Abstract—The latest video compression standard, High
Efficiency Video Coding (HEVC), has greatly improved the cod-
ing efficiency compared to the predecessor H.264/AVC. However,
equipped with the quadtree structure of coding tree unit par-
tition and other sophisticated coding tools, HEVC brings a
significant increase in the computational complexity. To address
this issue, a coding unit (CU) decision method based on fuzzy
support vector machine (SVM) is proposed for rate-distortion-
complexity (RDC) optimization, where the process of CU decision
is formulated as a cascaded multi-level classification task. The
optimal feature set is selected according to a defined misclas-
sification cost and a risk area is introduced for an uncertain
classification output. To further improve the RDC performance,
different regulation parameters in SVM are adopted and outliers
in training samples are eliminated. Additionally, the proposed
CU decision method is incorporated into a joint RDC opti-
mization framework, where the width of risk area is adaptively
adjusted to allocate flexible computational complexity to differ-
ent CUs, aiming at minimizing computational complexity under
a configurable constraint in terms of RD performance degrada-
tion. Experimental results show that the proposed approach can
reduce 58.9% and 55.3% computational complexity on average
with the values of Bjønteggard delta peak-signal-to-noise ratio as
−0.075 dB and −0.085 dB and the values of Bjøntegaard delta
bit rate as 2.859% and 2.671% under low delay P and random
access configurations, respectively, which has outperformed the
state-of-the-art fast algorithms based on statistical information
and machine learning.
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I. INTRODUCTION

RECENTLY, a large number of video clips are posted to
website and social media platform, which greatly change

our lives. However, the capability of data storage and trans-
mission has been challenged by the dramatically increasing
multimedia data. Therefore, an efficient video compression
algorithm is supposed to be developed. Since 2010, the High
Efficiency Video Coding (HEVC) [1] standard was calling for
proposal and the first version was finalized in 2013. Compared
with the predecessor H.264/AVC [2], HEVC can save about
50% bit rate with the same visual quality [1], which has a great
benefit for video storage and transmission. However, it adopts
the strategy of achieving Rate Distortion (RD) performance
gain at the cost of computational complexity. In other words,
the best coding parameter is eventually determined by RD cost
calculation and comparison from all candidates. Therefore, the
computational complexity limits its real-time applications.

In general, there are two research directions on the Rate-
Distortion-Complexity (RDC) optimization for HEVC. One
is computational complexity control, and the other is fast
algorithm. The former aims to minimize the coding distor-
tion under a given computational complexity constraint, while
the latter is to minimize the computational complexity under
a given RD performance degradation constraint. For com-
putational complexity control, the key point is to establish
the relationship between coding parameter and computational
complexity. For example, Corrêa et al. [3] had investigated the
relationship based on extensive experiments. Then the appro-
priate coding parameters can be easily selected by looking
up table under a given computational complexity constraint.
Deng et al. [4] presented a novel computational complex-
ity control approach, in which a visual attention model was
introduced to determine the range of depth for Coding Tree
Unit (CTU) by the established relationship with computational
complexity. For fast algorithm, it is to predict or estimate cod-
ing parameters directly without RD cost calculation, which can
avoid checking all coding parameter candidates. Many mod-
ules in video coding have been optimized, such as Coding
Unit (CU)/Prediction Unit (PU)/Transform Unit (TU) [5] mode
determination [6], Motion Estimation (ME) [7] and reference
frame selection [8]. Some of coding parameters are skipped
due to being rarely used in the previous frames, and some of
searching processes are early terminated, then the time can be
saved. This paper concentrates on the fast algorithm.
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Fig. 1. CTU partitions in HEVC. (a) CU partition in a frame. (b) A CTU partition. (c) Quadtree structure of CTU partition. (d) Cascaded classifiers.

In this paper, we present a novel CU decision scheme based
on Machine Learning (ML). The main technical contributions
of this paper are listed as follows: (1) the optimal feature set
is selected based on a defined misclassification cost; (2) reg-
ulation parameters in Support Vector Machine (SVM) [9] are
re-determined due to the difference between False Positive
(FP) and False Negative (FN) rates; (3) different weights are
set for training samples to eliminate the negative influence
from outliers; (4) the risk area is introduced to achieve a good
trade-off between computational complexity reduction and RD
performance degradation; (5) for different blocks, the flexi-
ble computational complexity is adaptively allocated by the
variable widths of risk area.

The remainder of this paper is organized as follows.
Section II briefly introduces the related works on fast algo-
rithm and Section III presents the problems and motivations.
The fuzzy SVM based CU decision is proposed in Section IV
and the optimal width of risk area determination is discussed
in Section V. Experimental results are illustrated in Section VI.
Section VII draws the conclusions.

II. OVERVIEW OF THE RELATED WORKS

To effectively reduce the computational complexity in
HEVC, many researchers have done lots of works. Generally,
the fast algorithms can be divided into two categories: statis-
tical information based [10]–[20] and ML based [21]–[30].

Shen et al. [10], [11] presented a fast inter frame mode
decision algorithm for HEVC, in which all existing cor-
relations, including quadtree structured and spatial-temporal
correlations, were jointly used to determine the range of block
size and to skip some special levels that were rarely used
in neighboring blocks. In [12], the coding parameters, such
as Motion Vector (MV), TU size, and Coded Block Flag
(CBF), were all utilized to estimate the texture complexity
for a fast encoding scheme. Xiong et al. [13] proposed a
fast inter CU decision scheme, in which a novel ME method
was designed and a new concept named motion compensation
RD cost was defined. To reduce the time of RD optimiza-
tion, zero block detection scheme [14], [15] was adopted after
Hadamard transform based on statistical information. In addi-
tion, a novel approach [16], bottom to top visiting order, was
effectively developed to reduce the computational complexity.
Jung and Park [17] proposed a fast mode decision method,

where the adaptive ordering of modes was employed. The
skip mode was fast determined [18] using the distortion char-
acteristics after calculating RD cost of 2N×2N merge mode.
Similarly, an early skip mode decision algorithm was presented
in [19], where a unimodal stopping model was designed. The
relationship between impossible modes and distribution of
distortion was explored to accelerate the encoding by [20].
Basically, these aforementioned fast algorithms merely use
hard thresholds from statistical properties and spatial-temporal
correlations. Although they can reduce computational com-
plexity in some degrees, they may have a risk of bringing
undesirable performance to some special cases because of
statistical thresholds.

A weighted SVM was utilized to predict CU early termina-
tion in [21] for computational complexity optimization. A data
mining based fast HEVC encoding method was proposed [22],
where ML algorithm of decision tree was used to predict early
termination and then the procedures of CU, PU and TU deter-
mination were all optimized. Zhang et al. [23] modeled the
quadtree structure of CTU partition as a three-level decision
task, and two three-output classifiers were trained. In [24], a
Bayesian decision rule based early termination method was
reported, in which on-line learning and off-line learning were
jointly applied to generate model parameters of classifiers.
Similar to [24], the Neyman-Pearson based rule was utilized
for fast mode decision algorithm [25]. A binary and multi-class
SVM based fast HEVC encoding algorithm was presented
in [26], where the off-line and on-line ML modes were com-
bined for classifiers based on a multiple reviewers system.
For the fast mode decision in intra frame encoding, the ML
technique is utilized as well. For example, two SVMs that
adopted the difference of CU sizes and RD cost ratio as
features were proposed to perform the decisions of CU split-
ting and early CU termination in [27]. Duanmu et al. [28]
proposed a fast mode and partition decision framework for
Screen Content Coding (SCC), where several decision trees
were trained and employed. Zhang et al. [29] presented an
effective data driven CU size decision approach, in which two
stages were included via off-line learning and on-line leaning.
In addition, a Convolutional Neural Network (CNN) based
approach was devised to reduce the encoder’s hardware com-
plexity [30]. Generally, these schemes are all fast video coding
methods based on ML. However, there will be a penalty of
RD performance degradation in case of false classification
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prediction. Therefore, an efficient misclassification prediction
control mechanism is supposed to be developed.

Actually, the statistical information based fast algorithms
have achieved a good performance. But they reduce compu-
tational complexity by removing rarely used modes according
to the statistical distributions and thresholds. These statisti-
cal distributions and thresholds are different from sequence to
sequence, which may lead to performance fluctuation, and it
always has a penalty of RD performance degradation because
of removing some candidates. While for ML based scheme,
it does the computational complexity reduction by prediction,
all modes are candidates. The performance can be improved if
the sophisticated ML tools, appropriate features and optimal
parameters are adopted. Therefore, the ML based algorithm
has more potential to reduce computational complexity.

III. PROBLEMS AND MOTIVATIONS

To achieve a better coding efficiency, the recursive CU deci-
sion has been introduced in HEVC. The CUs can change from
64×64 to 8×8, and they are noted as Depth 0 to Depth 3.
Fig. 1(a) illustrates an example of a frame from BasketballPass
(416×240) sequence and Fig. 1(b) provides the detailed par-
titions of the CTU marked with red boundary in Fig. 1(a).
The digital numbers in the blocks indicate the levels of depth.
According to the rule of recursive CU decision, the current CU
can be split into four sub-CUs, and then every sub-CU can be
further split into four CUs in the subsequent depth until the
largest level of depth. Eventually, the best CUs combination
will be determined after RD cost comparison. The procedure
demonstrates that every possible CU is required to be taken as
a candidate for achieving the optimal combination. As such,
the computational complexity of HEVC is about several times
than that of H.264/AVC [1].

Fig. 1(c) shows the quadtree structure of Fig. 1(b), where
different symbols indicate different CUs. This is a pruned
quadtree since the unused nodes and leaves are removed
accordingly. Compared with full quadtree, it only has limited
nodes and leaves. The quadtree structure of CTU parti-
tions (Fig. 1(c)) can be modeled as a cascaded classification
task [23], as shown in Fig. 1(d). The task reveals that the
splitting or non-splitting of current CU can be determined by
the Classifiers #0, #1 and #2 illustrated in Fig. 1(d). With
these cascaded classifiers, the full quadtree can be effec-
tively pruned. In other words, some CUs are early terminated
and some PU modes are skipped, then the computational
complexity can be reduced.

To analyze the upper bound of computational complexity
reduction with ML based CU decision scheme, four sequences
including BasketballPass (416×240), BQMall (832×480),
Johnny (1280×720) and Kimono1 (1920×1080) are adopted
for information collocation. For each sequence, twenty one
frames are encoded twice by the HEVC test model. The dif-
ference is that ground truths (CUs with the minimum RD cost
from the first encoding) are utilized directly in the second
encoding. The computational complexities of them are com-
pared. Table I shows the experimental results. QP denotes the
Quantization Parameter. D0 to D3 indicate Depth 0 to Depth 3,

TABLE I
DEPTH DISTRIBUTION AND UPPER BOUND OF COMPUTATIONAL

COMPLEXITY REDUCTION UNDER ML BASED CODING [UNIT: %]

respectively. TS indicates Time Saving. From the results, it can
be found that about 40.5%, 32.1%, 19.4% and 7.65% pixel
regions select Depth 0, 1, 2 and 3 as their best CUs, respec-
tively. If these CUs can be correctly predicted by classifiers,
the computational complexity reduction can reach 66.4% on
average without any penalty of RD performance degradation,
which is the upper bound of computational complexity reduc-
tion. At the same time, it demonstrates that there is much
potential to reduce computational complexity with ML based
CU decision.

SVM is utilized as the classifier in Fig. 1(d) for its better
classification prediction performance. Given a training set with
l samples {(x1, y1), (x2, y2), . . . .(xi, yi), . . . .(xl, yl)}, xi ∈ R

n

is feature vector of the ith sample, n is the feature dimension
and yi ∈ {−1,+1} is ground truth of the ith sample. The SVM
classification task can be derived as [9]:

min

(
1

2
ωTω + C

l∑
i=1

ξi

)

s.t. yi
(
ωTφ(xi)+ b

) ≥ 1 − ξi,

ξi ≥ 0, i = 1, 2, . . . , l (1)

where φ(xi) transfers xi from a lower-dimensional space
into a higher-dimensional space and the regulation param-
eter C controls the balance between margin maximum and
false classification prediction. (ω, b) represent the hyperplane.
ξi is slack variable of the ith sample, which indicates the
misclassification. The decision function is written as [9]:

y(x) = sgn
(
ωTφ(x)+ b

) =
{+1, ωTφ(x)+ b > 0

−1, ωTφ(x)+ b ≤ 0,
(2)

where x is the feature vector of the current test sample.
Basically, although SVM is able to solve majority of real-

world classification problems, there are still some issues which
should be considered to improve the performance of ML based
video coding. One issue is outlier. Some samples are far
away from central sample, which may have negative influ-
ence to classifier training. As shown in Fig. 2, it is the
histogram of the distance between the current and central sam-
ples. Three sequences, BasketballPass (416×240), BQMall
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Fig. 2. Histogram of distance between the current and central samples. (a) Classifier #0 (Negative Sample Set). (b) Classifier #1 (Negative Sample Set).
(c) Classifier #2 (Negative Sample Set). (d) Classifier #0 (Positive Sample Set). (e) Classifier #1 (Positive Sample Set). (f) Classifier #2 (Positive Sample Set).

(832×480) and Johnny (1280×720), are adopted for fea-
tures [23] and ground truths (splitting (+1) and non-splitting
(-1)) collection. The value of central sample is the average
value of the samples in terms of feature vector. The dis-
tance is represented by Euclidean distance. It can be easily
found that the distances of some samples are larger than
those of others. Another issue is the misclassification cost.
In real-world problems, the costs of the FP and FN rates are
always different. They should be assigned different weights
to minimize the false classification cost. However, these two
issues are not seriously taken into consideration in these
existing works [23], [26], [31]. Specifically, when the clas-
sification prediction accuracy (splitting/non-splitting) is low,
the RD performance cannot be guaranteed by using the ML
based structure directly. Thus, an efficient control mechanism
is also supposed to be developed to achieve a better RDC
performance.

IV. PROPOSED FUZZY SVM BASED CU DECISIONS

A. ML Based CU Decision

Based on the analysis in Section III, the splitting or non-
splitting of the current CU is determined by a classifier who
has learned the mapping from feature vector to CTU partitions.
Beginning with a CTU, when Depth is less than 3, a classifier
is utilized to predict the splitting flag. If the output is splitting,
the current CU will be split into four sub-CUs directly; If the
output is non-splitting, the PU candidates will be checked and
the remaining CUs will be skipped; If the output is uncertain,
the original HEVC test model will be activated.

Generally, in a SVM, if a test sample is far away from the
hyperplane, it is more confident for its classification predic-
tion [32]. Therefore, there is a risk area [32]. If a test sample

belongs to this risk area, there is a high risk of misclassifica-
tion. The distance between test sample and hyperplane can be
represented as:

d = ωTφ(x)+ b

‖ω‖ , (3)

where φ(x) and (ω, b) are as same as the parameters in Eq.(1).
In order to achieve a good trade-off between computational
complexity reduction and RD performance degradation, we
redesign the decision function. If a test sample does not belong
to the risk area, the output will be accepted; otherwise, the
output will be rejected, and set as 0, which means uncertain
output.

Y(x) =
{

0, β− ≤ d − δ ≤ β+
y(x), otherwise,

(4)

where δ is the offset of risk area with respect to the hyper-
plane. In this paper, δ is set as 0 for simplicity. y(x) and d
are determined by Eqs.(2) and (3), respectively. β− and β+
are the lower and upper boundaries of risk area, which will
be determined in Section V.

Some statistical experiments are conducted to reveal the
influence of risk area in the classifier. Four sequences are
selected, i.e., BasketballPass (416×240), BQMall (832×480),
KristenAndSara (1280 × 720), and Kimono1 (1920 × 1080).
For simplicity, the parameters of β− and β+ are set as -0.005
and +0.005. The classification prediction results are shown in
Table II. It can be found that the total classification prediction
accuracy could reach 81.7% on average, while the classifica-
tion prediction accuracy in the risk area only reaches 27.6%
on average. At the same time, the rates of FP and FN are
presented as 4.44% and 13.9% respectively. It indicates that
there is a large gap between FP and FN. Thus, the differ-
ent misclassification costs from FP and FN are supposed to
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TABLE II
CU SPLITTING/NON-SPLITTING CLASSIFICATION PREDICTION

ACCURACY [UNIT: %] (RATIO1 AND RATIO2 INDICATE TOTAL

CLASSIFICATION PREDICTION ACCURACY AND CLASSIFICATION

PREDICATION ACCURACY IN RISK AREA)

TABLE III
SELECTED FEATURES OF DIFFERENT CLASSIFIERS (XCBF_SKIP IS FROM

BY-PRODUCT INFORMATION OF THE CURRENT CU CODING,
WHILE XCBF_NB IS FROM THE SPATIAL DOMAIN)

be considered in the ML based video coding, which will be
discussed in Section IV-C.

B. Feature Selection

As we know, features are important for classifiers, since they
have significant influence on the classification prediction accu-
racy. Therefore, the optimal feature set is desired to achieve
a better performance. As shown in Table III, thirteen feature
candidates from the temporal domain, by-product information
of the current CU coding and the spatial domain are listed. The
detailed descriptions of these feature candidates are presented
as follows.

The first category of features are extracted from the tempo-
ral domain. The value of Sum of Absolute Difference (SAD)
between current and co-located (in position 0 of the reference
list 0) CUs is calculated as (1) xSAD.

The second category of features are extracted from the
by-product information of the current CU coding. The cur-
rent coding information after checking SKIP mode is highly
valuable, which is worth setting as features. Therefore, the cor-
responding by-product information is extracted and denoted as
(2) xRDcost, (3) xSkipFlag, (4) xDistortion, (5) xBits, (6) xCtxSkipFlag.
The RD cost, distortion, and bits indicate the RD performance.
Thus they are listed as features. SkipFlag is the flag of skipping
in PU level. CtxSkipFlag is the flag of skipping in neighboring

blocks. Additionally, QP, the adjusting factor between coding
bits and distortion, is introduced as the feature (7) xQP since
it will affect the CTU partitions. (8) xCBF_SKIP, CBF is an
important flag representing coded block, which relates to the
coding information.

The third category of features are extracted from the spa-
tial domain. Five features in adjacent encoded blocks are
selected and denoted as (9) xMergeFlag, (10) xMV , (11) xPartition,
(12) xDepth, and (13) xCBF_NB, respectively. MergeFlag denotes
the flag of merge mode. MV is the motion information.
Partition size means the selected PU size from mode can-
didates. CU depth is the block size, which can change from
64×64 to 8×8. And the coded block flags from neighboring
blocks are extracted. These five features are from upper-above,
left, upper-right blocks of current block, and the value of
individual feature is calculated by weighted averaging.

In the existing ML based video coding schemes, the features
are mostly selected by experience. Generally, the performance
can be further improved with an optimal feature set. In [31],
a feature selection approach was proposed via checking all
the feature set candidates. However, only the classification
prediction accuracy was set as the cost function. For the ML
based video coding, the RD performance should be taken into
account for feature selection. Then the proposed cost func-
tion of feature selection is designed with the RD performance
degradation due to misclassification.

J = μ+Pfp + μ−Pfn, (5)

where μ+ and μ− are the RD cost ratios with false clas-
sification prediction, Pfp and Pfn are the FP and FN rates,
respectively. Here, μ+ and μ− can be calculated as follows:

μ+ = RDCosts
RDCostbest

, μ− = RDCostns

RDCostbest
, (6)

where RDCostns is the RD cost when the current block
is not split into four sub-CUs in case of false negative
prediction, RDCosts is the RD cost when the current block
is split into four sub-CUs in case of false positive predic-
tion, and RDCostbest indicates the RD cost when the current
block achieves the optimal choice. For three classifier lev-
els, the parameters of μ+ and μ− are set as 1.185 : 1.014,
1.089 : 1.038 and 1.026 : 1.057, respectively, according
to [23].

Based on the principle of checking all feature set candidates,
the total number of feature sets is calculated by:

K =
N∑

i=1

(
i

N

)
= 2N − 1, (7)

where N is the number of feature candidates. Here, N equals
to 13. So the total number of feature sets is K = 8191, and
the numbers from 1 to 8191 are assigned to the feature sets
as indexes. For example, feature set #1 contains {feature #1},
. . . , feature set #14 contains {feature #1, feature #2}, etc.

The misclassification costs of all these feature sets are cal-
culated, as shown in Fig. 3. The red lines indicate the feature
sets with minimum misclassification cost. Therefore, feature
sets #5065, #598 and #8187 are optimal for Classifiers #0,
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Fig. 3. Misclassification cost of feature set. (a) Classifier #0. (b) Classifier
#1. (c) Classifier #2. (Red lines indicate feature sets with minimum misclas-
sification cost, and their indexes are 5065, 598 and 8187, respectively.)

#1 and #2. Then, the selected features are achieved, which
are shown in right columns in Table III. It can be found that
(1) for different classifiers, the optimal feature sets are differ-
ent; (2) if all these feature candidates are utilized, it does not
always guarantee the best performance.

C. Regulation Parameters Determination for SVM

In the real-world classification problems, the costs of FP
and FN rates are always different. However, the regulation
parameters in Eq.(1) are identical. In this paper, for the CTU
partitions, the splitting prediction is defined as positive (+1),
and the non-splitting prediction is negative (-1). The regulation
parameters of these two classes are noted as C+ and C−. Then
Eq.(1) becomes as follows:

min

(
1

2
ωTω + C

l∑
i=1

ξi

)
,

C =
{

C+, yi > 0
C−, yi < 0,

s.t. yi
(
ωTφ(xi)+ b

) ≥ 1 − ξi,

ξi ≥ 0, i = 1, 2, . . . , l. (8)

To determine the optimal regulation parameters of C+
and C−, four sequences are utilized, i.e., BasketballPass

Fig. 4. False rate with respect to log(C+/C−). (a) FP vs ϕ. (b) FN vs ϕ.

TABLE IV
FITTING PARAMETERS AND FITTING ACCURACY

(416 × 240), BQMall (832 × 480), Johnny (1280 × 720), and
ParkScene (1920 × 1080). We define the relationship firstly:

ϕ = log

(
C+

C−

)
, (9)

where log() is the logarithmic function.
With the samples (features and ground truth) from these

sequences, the classification prediction experiments are car-
ried out. In Fig. 4, the FP rate increases while the FN rate
decreases with the increasing ϕ. Then they are fitted by a
polynomial function, and the fitting parameters and fitting
accuracy are illustrated in Table IV. p(ϕ) and q(ϕ) are poly-
nomial functions to represent the FP and FN rates with respect
to ϕ, respectively. R2 means the fitting accuracy to evaluate
the goodness of fitting, which ranges from 0 to 1. The larger
value of R2 is, the better fitting is and vice versa. Here, for
the two dimensional function fitting, the values of R2 are all
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Fig. 5. Classifiers training and updating for the proposed method. (Note: classifiers are periodically updated during encoding.)

greater than 0.95, which indicate perfect fitting. Ai and Bi are
the fitting parameters.

p(ϕ) =
3∑

i=0

Aiϕ
i, q(ϕ) =

3∑
i=0

Biϕ
i. (10)

Then the optimal parameter of ϕ can be achieved by minimiz-
ing the misclassification cost.

ϕ∗ = arg min
ϕ

J, (11)

where,

J = μ+p(ϕ)+ μ−q(ϕ). (12)

After solving the above equation,

ϕ∗ =
√
β2 − 4αγ − β

2α
. (13)

Here, the parameters of α, β and γ are derived by A1 to A3,
B1 to B3 and μ+, μ−:

α = 3A3μ
+ + 3B3μ

−,
β = 2A2μ

+ + 2B2μ
−,

γ = A1μ
+ + B1μ

−. (14)

Therefore, the relationship of C+ and C− in Eq.(9) can be
rewritten as

C+ = exp
(
ϕ∗)× C−, (15)

where exp() is the exponential function. In this paper, we set
C− as 1.0, so C+ equals to exp(ϕ∗).

D. Fuzzy SVM Based Sample Weight Assignment

During the process of traditional classifier training, thou-
sands of samples are treated as the same. Actually, they have
different contributions. Some of them are useful and others
may have negative influence. Therefore, they are supposed to
be assigned different weights according to their individual con-
tributions. Then, fuzzy SVM [33] is adopted, and Eq.(1) can
be improved:

min

(
1

2
ωTω + C

l∑
i=1

kiξi

)
,

s.t. yi
(
ωTφ(xi)+ b

) ≥ 1 − ξi,

ξi ≥ 0, i = 1, 2, . . . , l, (16)

where ki is the weight of the ith sample. If a sample is far away
from the central sample in the same class, it can be defined as

an outlier, which should be assigned a small weight. In other
words, the slack variable of the sample will be ignored when
training. Thus, the weight ki of a sample can be used for slack
variable in Eq.(16). Based on the distance between the current
and central samples, ki is calculated as follows:

ki = 2

1 + exp(ψ‖xi − x‖) , (17)

where ψ is a constant, which is set as 0.1 in this paper from
extensive experiments, xi and x are the feature vectors of the
current and central samples.

E. Overall Algorithm

According to Eqs.(1), (8) and (16), the above mentioned
issues are all taken into account, then we achieve the follow-
ing equation, which includes different regulation parameters
(C+and C−), and different weights ki for samples.

min

(
1

2
ωTω + C

l∑
i=1

kiξi

)
,

C =
{

C+, yi > 0
C−, yi < 0,

s.t. yi
(
ωTφ(xi)+ b

) ≥ 1 − ξi,

ξi ≥ 0, i = 1, 2, . . . , l. (18)

Here, C+ and C− are determined by Eq.(15), and ki is
calculated by Eq.(17).

Based on the mentioned procedures, the overall algorithm
of proposed method can be summarized as follows:

Step 1: As shown in Fig. 5, when a sequence is input
for encoding, the frames of first Group of Picture (GOP) are
encoded by the original HEVC test model. At the same time,
the ground truths and the selected features are extracted;

Step 2: Classifiers #0, #1 and #2 are trained with the
Eq.(18), and these classifiers can be periodically updated;

Step 3: After the classifiers are achieved, the CU partitions
of following inter frames will be predicted directly;

Step 4: If a sample belongs to risk area, the original
HEVC test model will be triggered, otherwise the outputs from
classifiers will be utilized for encoding directly.

V. WIDTH OF RISK AREA DETERMINATION

According to Eq.(4), the width of risk area in the ith CU
level can be represented as

Wi = β+
i − β−

i . (19)
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Fig. 6. Relationships among BD-PSNR, TS and parameters of β−
i and β+

i . (a) BD-PSNR vs β−
0 and β+

0 (Level 0). (b) BD-PSNR vs β−
1 and β+

1 (Level 1).
(c) BD-PSNR vs β−

2 and β+
2 (Level 2). (d) TS vs β−

0 and β+
0 (Level 0). (e) TS vs β−

1 and β+
1 (Level 1). (f) TS vs β−

2 and β+
2 (Level 2).

In fact, there are several cases as follows:
1) When β−

i and β+
i equal to -∞ and +∞ respectively, all

the outputs from classifier will be rejected, namely, the
original HEVC test model is activated and there is no
computational complexity optimization.

2) When β−
i and β+

i equal to -∞ and 0 respectively,
the non-splitting classification prediction will always be
rejected and the splitting classification prediction will
always be accepted.

3) When β−
i and β+

i equal to 0 and +∞ respectively, the
splitting classification prediction will always be rejected
and the non-splitting classification prediction will always
be accepted.

4) When −∞ 	 β−
i < 0 and 0 < β+

i 	 +∞, some of
splitting classification predictions will be rejected and
some of non-splitting classification predictions will be
accepted.

To achieve the optimal parameters of β−
i and β+

i , sta-
tistical experiments are conducted firstly. Four sequences,
i.e., BasketballPass (416×240), BQMall (832×480), Johnny
(1280×720), and ParkScene (1920×1080) are utilized for
encoding. The parameters of β−

i and β+
i are set as rang-

ing from 0 to -0.05 step by -0.0125 and from 0 to 0.05
step by 0.0125, respectively. The performances are mea-
sured by TS and Bjøntegaard Delta Peak-Signal-to-Noise Ratio
(BD-PSNR) [34]. Fig. 6 shows the experimental results under
different optimization levels. Level 0 represents that only
Classifier #0 is activated and the Classifiers #1 and #2 are
invalid. Similar configuration is set for Levels 1 and 2. It
should be noted that if the classifier is invalid, the original
HEVC test model will be utilized in the associated level. Here,

TABLE V
FITTING PARAMETERS AND FITTING ACCURACY

TS is calculated as

TS = 1

4

4∑
i=1

Tc(QPi)− T�(QPi)

Tc(QPi)
, (20)

where Tc(QPi) and T�(QPi) are the coding time of the original
HEVC test model and scheme � with QPi, here � indicates
the proposed method.

We model the parameters (β−
i and β+

i ) determination as
a RDC optimization issue, i.e., maximizing the computa-
tional complexity reduction R and maintaining the value P
of BD-PSNR being greater than a pre-defined threshold t:

max[R], s.t.P ≥ t. (21)

For simplicity, ri(β
−
i , β

+
i ) and pi(β

−
i , β

+
i ) are utilized to

demonstrate the fitting functions of TS and BD-PSNR with
respect to the parameters of β−

i and β+
i , and the fitting param-

eters and accuracy are shown in Table V, ai to hi are the
fitting parameters, R2 means the fitting accuracy to measure
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the goodness of fitting, which ranges from 0 to 1. For the three
dimensional function fitting, the values of R2 are all greater
than 0.85, which indicate good fitting. For different classifier
levels, the fitting parameters are different.

ri
(
β−

i , β
+
i

) = ai + biβ
−
i + ciβ

+
i + diβ

−
i β

+
i + ei

(
β+

i

)2
, (22)

pi
(
β−

i , β
+
i

) = fi + giβ
−
i + hiβ

+
i , (23)

where ai, bi, ci, di, ei, fi, gi, hi are the fitting parameters.
Then, the Eq.(21) can be rewritten as

max

[
2∑

i=0

miri
(
β−

i , β
+
i

)]
, s.t.

2∑
i=0

nipi
(
β−

i , β
+
i

) ≥ t, (24)

where mi and ni are the weights, demonstrating the con-
tribution to the ultimate BD-PSNR and TS. Generally, this
optimization issue can be solved by the Lagrange Multiplier
Method as follows:(

β−
0 , β

+
0 , β

−
1 , β

+
1 , β

−
2 , β

+
2

)∗ = argmax J, (25)

where,

J =
2∑

i=0

miri
(
β−

i , β
+
i

)− λ

(
2∑

i=0

nipi
(
β−

i , β
+
i

)− t

)
, (26)

where λ is the Lagrange Multiplier. Then, we can get the
following linear equations,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

m0
(
b0 + d0β

+
0

)− λn0g0 = 0
m0
(
c0 + d0β

−
0 + 2e0β

+
0

)− λn0h0 = 0
m1
(
b1 + d1β

+
1

)− λn1g1 = 0
m1
(
c1 + d1β

−
1 + 2e1β

+
1

)− λn1h1 = 0
m2
(
b2 + d2β

+
2

)− λn2g2 = 0
m2
(
c2 + d2β

−
2 + 2e2β

+
2

)− λn2h2 = 0∑2
i=0 ni

(
fi + giβ

−
i + hiβ

+
i

) = t.

(27)

After solving the above linear equations, the optimal param-
eters of (β−

0 , β
+
0 , β

−
1 , β

+
1 , β

−
2 , β

+
2 ) are achieved for three

classifier levels. The pre-defined threshold t in Eq.(27) is set as
-0.100 in terms of BD-PSNR. It should be noted that the width
of risk area is only determined once when the RD performance
degradation constraint is given before encoding.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

The experiments are conducted on the platform of HEVC
test model version HM 16.5 [35]. Nineteen sequences from
Class A to Class E are encoded at four QPs, 22, 27, 32, and 37
under Common Test Conditions (CTC) [36] with Low Delay P
(LDP) and Random Access (RA) configurations. The settings
of Fast Encoder Decision and Fast Decision for Merge RD cost
are enabled for HM 16.5. The settings of Early SKIP Detection
(ESD), Early CU (ECU), and CBF Fast Mode (CFM) are
disabled, and the default configuration is used. All the exper-
iments are performed on the computer equipped with the
Intel Core i7-4790 CPU @ 3.60GHz, 8GB memory, Windows
7 Enterprise 64-bit operating system. The original HEVC
test model (HM 16.5) is utilized as the anchor for perfor-
mance comparison. The computational complexity reduction
is measured by TS, the RD performance gain is measured
by BD-PSNR and Bjøntegaard Delta Bit Rate (BD-BR) [34].

The larger value of TS means more computational complex-
ity has been reduced, the negative value of BD-PSNR and
positive value of BD-BR demonstrate RD performance degra-
dation. The coding time is the total executing time of video
encoder. For the proposed method, the time of classifiers train-
ing is also included, because the Classifiers #0, #1 and #2 are
trained by on-line mode with training data from the first GOP
and updated at a fixed period during encoding, as shown in
Fig. 5. After the classifiers are prepared, the CTU partitions
in the following inter frames are directly predicted. It should
be noted that the sequences in Class A under LDP configu-
ration and the sequences in Class E under RA configuration
are not tested according to the CTC [36]. Since the sequences
of BasketballPass, BQMall, Johnny and ParkScene have been
used for fitting parameters determination, they are marked as
* just for reference in the results. In addition, the source codes
of proposed feature selection and ML based CU decisions are
available for academic use.1

A. Performance Evaluation of Feature Selection

Firstly, the proposed approach with full features and the
proposed approach with selected features under three opti-
mization levels are compared to evaluate the efficient of feature
selection. Also, the results of combined optimization levels
are provided. For a fair performance comparison, the widths
of risk area are set as the same, i.e., β− = −0.005 and
β+ = +0.005. And the classifiers are all trained by Eq.(1).
The experimental results are shown in Tables VI and VII.
Level 0 + 1 + 2 means that Classifiers #0, #1 and #2 are
all activated, which demonstrates that these three separate
optimization levels are combined together.

Although only 4 features are selected for Level 1 (shown
in Table III), according to the results in Tables VI and VII,
the performances of proposed approach with selected features
are better than those of proposed approach with full features,
where the BD-BR of the former is 0.950% while the BD-BR of
the latter is 1.128%, the BD-PSNR of the former is -0.023dB
while the BD-PSNR of the latter is -0.027dB, and the TS
of the former is 37.7% while the TS of the latter is 36.3%.
Similar results can be found in other levels. It demonstrates
that the proposed approach with selected features outperforms
the proposed approach with full features. Meanwhile, it can be
found that Level 1 has the largest computational complexity
reduction while Level 0 keeps the best RD performance.

B. Performance Comparison With State-of-the-Art
Algorithms

In this subsection, four state-of-the-art fast HEVC encod-
ing algorithms, including Corrêa CSVT [22], Zhang TIP [23],
Zupancic TMM [16], and Jung CSVT [17], are utilized as
benchmarks for performance comparison. The first two are ML
based schemes while the other two are the statistical informa-
tion based schemes. The source codes of Zhang TIP, Zupancic
TMM and Jung CSVT are all from the authors and implanted
to HM16.5. The scheme of Corrêa CSVT is implemented by

1https://drive.google.com/file/d/0B82gacRzADm8NS10NmVQcGltc1k/
view?usp=sharing
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TABLE VI
PERFORMANCE OF FULL FEATURES (LDP) [UNIT:%/DB/%]

TABLE VII
PERFORMANCE OF SELECTED FEATURES (LDP) [UNIT:%/DB/%]

TABLE VIII
PERFORMANCE COMPARISON WITH FOUR STATE-OF-THE-ART FAST ALGORITHMS (LDP) [UNIT:%/DB/%]

ourselves on the platform of HM 16.5. Corrêa CSVT predicts
the CTU partitions with decision tree algorithm. Zhang TIP
uses two SVMs to predict the CU size in every level, and the
different prediction results from two SVMs will activate the

original HEVC test model. Zupancic TMM uses the reverse
CU visiting order to reduce the computational complexity.
Jung CSVT adopts an adaptive ordering of modes to do com-
putational complexity reduction. Here, the proposed approach
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TABLE IX
PERFORMANCE COMPARISON WITH FOUR STATE-OF-THE-ART FAST ALGORITHMS (RA) [UNIT:%/DB/%]

is equipped with the classifiers trained by Eq.(18) and the
width of risk area is determined by Eqs.(19) and (27). It should
be noted that the classifiers are only trained with the training
data from the first GOP of every sequence without updating.
The experimental results are shown in Tables VIII and IX
under LP and RA configurations, respectively.

From Table VIII, it can be found that, 48.2% average com-
putational complexity is reduced with the RD performance
loss as 4.125% in terms of BD-BR and -0.152dB in terms of
BD-PSNR for Corrêa CSVT, Zhang TIP can reduce 46.2%
computational complexity on average with the values of BD-
BR and BD-PSNR as 1.572% and -0.039dB, Zupancic TMM
achieves 44.8% TS while the bit rate increases 3.947% and the
PSNR loss reaches -0.107dB on average, Jung CSVT keeps
the great RD performance but obtains the least computational
complexity reduction, while for the proposed approach, it
achieves 58.9% computational complexity reduction and keeps
the values of BD-BR and BD-PSNR as 2.859% and -0.075dB.
Compared with Zhang TIP, the proposed approach achieves
12.7% complexity reduction and 1.287% BD-rate increase on
average under LDP configuration. The reasons are that the
BD-rate does not increase in a linear manner with the com-
plexity reduction, and it becomes more and more difficulty
to reduce the complexity and maintain the better RD perfor-
mance after the complexity has been largely explored. In fact,
the proposed approach has less classifiers utilization, more
flexible performance control and more factors consideration
(outliers and misclassification cost). Because the performance
of proposed approach can be easily adjusted, i.e., aiming at
maximizing the complexity reduction under a configurable RD
performance degradation constraint. We change the RD perfor-
mance degradation constraint, which is set as similar to the RD
performance of Zhang TIP. The experimental results reveal that
the proposed method is a little better than Zhang TIP in terms
of complexity reduction and RD performance, the BD-BR of
the former is 1.411% and the BD-BR of the latter is 1.572%,
while the time saving of the former is 49.7% and the time
saving of the latter is 46.2%. At the same time, the values of
standard deviation for each scheme are calculated in terms of
RD performance loss and TS, which demonstrate that Zhang

TIP and the proposed approach have the stable RD perfor-
mance, while Zupancic TMM and the proposed approach keep
a little computational complexity reduction fluctuation. Similar
results can be found under RA configuration in Table IX.

Among these state-of-the-art algorithms, Corrêa CSVT just
takes decision tree algorithm for early termination and CU
skipping, the RDC optimization is not effectively considered.
Zhang TIP and Jung CSVT both have a limited TS because
they use a strict constraint for the RD performance loss. For
the scheme of Zupancic TMM, the settings of ESD, ECU,
and CFM are inactivated for a fair performance comparison,
which means that it has a limited contribution on computa-
tional complexity reduction by their own scheme. Compared
with these algorithms, the proposed approach makes the best
RDC performance.

In addition, the proposed method is compared with the
HEVC test model which is equipped with enabled ESD, ECU
and CFM. The results show that the proposed method can
further reduce 9.7% complexity with only about 0.9% bit rate
increase under RA configuration. Also, the proposed method
has more stable complexity reduction for different sequences.

C. Percentage of Time Consumption in
Proposed Approach

To test the complexity overhead of classifiers training in the
proposed approach, the percentages of time consumption are
recorded. Four sequences with different resolutions and dif-
ferent contents, i.e., BlowingBubbles (416×240), PartyScene
(832×480), FourPeople (1280×720), and BasketballDrive
(1920×1080), are adopted and encoded under LDP config-
uration at QP 27. The results are shown in Fig. 7. In the
proposed approach, two important parts are included, namely,
classifiers training and video encoding. According to Fig. 7, it
can be found that the classifiers training only occupies about
1% in total time, which can be ignored. Therefore, the com-
plexity overhead of classifiers training has no impact on the
complexity reduction. In addition, for the sequence with larger
resolution, the time consumption of classifiers training is more
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TABLE X
PERFORMANCE COMPARISON IN CASE OF SCENE CHANGE (LDP) [UNIT:%/DB/%]

Fig. 7. Percentage of time consumption in the proposed approach.

than that of others, because it has more training samples when
the number of training frames is fixed.

D. Performance Verification in Case of Drastic
Scene Change

Additionally, four new sequences with drastic scene change
are generated for performance verification. Three sequences
with the same resolution from traditional sequences are
combined together for each new sequence. For example,
Seq1 (416×240) is created by combining BlowingBubbles,
RaceHorces and BQSquare in order. In detail, the first 101
frames are extracted from BlowingBubbles, the following
100 frames are extracted from RaceHorces, and the last 100
frames are extracted from BQSquare. There are 301 frames
(0-300) in total and the scene change will occur at the 101th

and 201th frames. Similarly, Seq2 (832×480) is created from
PartyScene, BasktballDrill and BQMall, Seq3 (1280×720) is
created from FourPeople, KristenAndSara and Vidyo1, and
Seq4 (1920×1080) is created from BasketballDrill, BQTerrace
and Cactus. These four new sequences are encoded under the
same configuration as the traditional sequences.

Here, the Classifiers #0, #1 and #2 are trained with the
training data from the first GOP of current sequence and peri-
odically updated (120 frames per period in this experiment)
for the proposed method. The periodically updating means that
Classifiers #0, #1 and #2 will be re-trained at the 121th frame,
the 241th frame, the 361th frame and so on. It should be noted
that the classifiers are not updated after scene change, but peri-
odically updated, because we do not know when the scene
change will happen in practice. The experimental results are
illustrated in Table X.

In case of drastic scene change, Corrêa CSVT saves about
46.8% time and the RD performance degradation reaches

5.105% in terms of BD-BR and -0.171dB in terms of
BD-PSNR on average, Zhang TIP can reduce 45.2% computa-
tional complexity with the values of BD-BR and BD-PSNR as
1.909% and -0.042dB, Zupancic TMM reduces about 44.9%
time with the BD-BR and BD-PSNR as 3.982% and -0.100dB,
Jung CSVT achieves about 23.8% computational complex-
ity reduction with the values of BD-BR and BD-PSNR as
0.755% and -0.040dB. While for the proposed approach, it
can reduce about 58.9% computational complexity with the
RD performance degradation as 3.609% in terms of BD-BR
and -0.089dB in terms of BD-PSNR. From the experimental
results, it can be easily found that the proposed method outper-
forms the state-of-the-art algorithms as same as the traditional
sequences.

VII. CONCLUSION

This paper presents a CU decision method based on ML, in
which the quadtree structure of CTU partition is modeled as
a multi-level cascaded classification task and the CUs can be
directly predicted by a fuzzy SVM. Different from traditional
classification problems, the proposed CU decision scheme
incorporates a misclassification cost defined by the combina-
tion of classification prediction accuracy and RD performance
degradation. Then, with the misclassification cost, the opti-
mal feature set is selected, and the regulation parameters of
SVM are determined. At the same time, the negative influence
from outlier in the training data is eliminated. Additionally, in
order to achieve a great RDC performance, a risk area is intro-
duced into the SVM decision function, which means that if the
current CU belongs to the risk area, it will activate the orig-
inal HEVC test model. Besides, the different widths of risk
area are allocated to different CUs aiming at maximizing the
computational complexity reduction under a configurable RD
performance degradation constraint. Compared with the state-
of-the-art statistical information and ML based fast algorithms,
the proposed method is the best in terms of RDC performance.
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